Find Zeros of Functions, Integration, Differentiation

In the Mathematics>>Script & Furmula>>Zeros palette, we have these functions to find the zero of a function:

- **1. Find All Zeros of f(x)**
- 2. New Raphson Zero Finder
- **3. Ridders Zero Finder**
- 4. nD Nonlinear System Single Solution: n-D variables
- 5. nD Nonlinear System Solver: n-D variables

In addition, for polynomial, on Mathematics>>Polynomial palette

- **6.** Polynomial Roots: find the zero pf f(x)
- 7. Polynomial Real Zeros Counter Vis: find the number of the roots.

8. Numeric Integration

Context Help	×
NI_AALPro.lvlib:1D Numeric Integration.vi	
Input Array 7 a result dt ft error integration method	
Performs numeric integration on the Input Array using one of four popular numeric integration methods.	
Wire data to the Input Array input to determine the polymorphic instance to use or manually select the instance.	
Detailed help	
······································	.:

9. Numeric Derivative x(t)

Assignment 1

Find the zero for the polynomial $P(x)=x^{4}+14*x^{3}+71*x^{2}+154*x+120=0.$

Using the Mathematics/Script & Fomula/Zeros/Polynomial Roots.vi

Array 0 2 120 7 154 71 7 14 1 Roots		P(x)=X^4+14*x^3+71*x^2+154*x+120
Roots	Array	A 154 X 71 X 14 X 1
	Roc	ots

Assignment 2

Find the zero for the equation $P(x)=x^{4}+14*x^{3}+71*x^{2}+154*x+120=0.$

Using the Find All Zero of f(x).vi

Assignment 3

Use the **nD Nonlinear System Single Solution** function to find the solution of the following equations:

Hint:

1). You can referee the example code Equation Explorer.vi, located in the fold

C:\Program Files\National Instruments\LabVIEW 2023\examples\Mathematics\Scripts and Formulas

2). You only need to directly wire the associated input and output terminals of this function.

Assignment 4: Numeric Integration

Use the Numeric Integration.vi function to calculate the integral of

 $x(t)=t^3+t^2$, between the range $0 \le t \le 20$, with sampling step 0.25.

Also, use the XY Graph to show the plot of the x(t) in the range. Hint: using a for loop the sample the x(t) in the range of t.

Context Help	×		
NI_AALPro.lvlib:1D Numeric Integration.vi			
Input Array dt integration method			
Performs numeric integration on the Input Array using one of four popular numeric integration methods.			
Wire data to the Input Array input to determine the polymorphic instance to use or manually select the instance.			
Detailed help			
æ b ?			

Assignment 5: Derivate x(t)

Use the Derivative x(t).vi function to find the derivative of $x(t)=t^3+t^2$, between the range $0 \le t \le 20$, with sampling step 0.5.

Also, use the XY Graph to show the plot of the x(t) in the range.

Hint: using a for loop the sample the x(t) in the range of t.

Context Help	×
Derivative x(t).vi	
X Initial Condition Final Condition dt method Performs a discrete differentiation of the	
sampled signal X .	
Detailed help	
· 🕫 🚡 ?	