Find Zeros of Functions, Integration, Differentiation

In the Mathematics>>Script \& Furmula>>Zeros palette, we have these functions to find the zero of a function:

1. Find All Zeros of $f(x)$
2. New Raphson Zero Finder
3. Ridders Zero Finder
4. nD Nonlinear System Single Solution: n-D variables
5. nD Nonlinear System Solver: n-D variables

In addition, for polynomial, on Mathematics>>Polynomial palette
6. Polynomial Roots: find the zero pf $\mathrm{f}(\mathrm{x})$
7. Polynomial Real Zeros Counter Vis: find the number of the roots.

8. Numeric Integration

Context Help
NI_AALPro.Ivlib:1D Numeric Integration.vi
integration method
Performs numeric integration on the Input Array
using one of four popular numeric integration
methods.
Wire data to the Input Array input to determine
the polymorphic instance to use or manually
select the instance.
Detailed help
国 \AA ?

9. Numeric Derivative $x(t)$

Assignment 1

Find the zero for the polynomial
$\mathrm{P}(\mathrm{x})=\mathrm{x}^{\wedge} 4+14 * \mathrm{x}^{\wedge} 3+71^{*} \mathrm{x}^{\wedge} 2+154 * \mathrm{x}+120=0$.
Using the Mathematics/Script \& Fomula/Zeros/Polynomial Roots.vi

Assignment 2

Find the zero for the equation
$\mathrm{P}(\mathrm{x})=\mathrm{x}^{\wedge} 4+14^{*} \mathrm{x}^{\wedge} 3+71^{*} \mathrm{x}^{\wedge} 2+154 * \mathrm{x}+120=0$.
Using the Find All Zero of $f(x)$.vi

Assignment 3

Use the nD Nonlinear System Single Solution function to find the solution of the following equations:

Hint:

1). You can referee the example code Equation Explorer.vi, located in the fold

C:\Program Files\National Instruments\LabVIEW 2023lexamples \backslash Mathematics\Scripts and Formulas
2). You only need to directly wire the associated input and output terminals of this function.

Assignment 4: Numeric Integration

Use the Numeric Integration.vi function to calculate the integral of
$\mathbf{x}(\mathbf{t})=\mathbf{t}^{\wedge} \mathbf{3}+\mathrm{t}^{\wedge} \mathbf{2}$, between the range $\mathbf{0} \leq \mathbf{t} \leq \mathbf{2 0}$, with sampling step 0.25 .

Also, use the XY Graph to show the plot of the $\mathbf{x}(\mathrm{t})$ in the range.
Hint: using a for loop the sample the $x(t)$ in the range of t.

Assignment 5: Derivate $\mathbf{x}(\mathrm{t})$

Use the Derivative $\mathrm{x}(\mathrm{t})$.vi function to find the derivative of $\mathbf{x}(\mathrm{t})=\mathbf{t}^{\wedge} \mathbf{3}+\mathrm{t}^{\wedge} \mathbf{2}$, between the range $\mathbf{0} \leq \mathbf{t} \leq \mathbf{2 0}$, with sampling step 0.5 .

Also, use the XY Graph to show the plot of the $\mathbf{x}(\mathrm{t})$ in the range.

Hint: using a for loop the sample the $x(t)$ in the range of t.

